Voltage-gated channels and calcium homeostasis in mammalian rod photoreceptors.
نویسندگان
چکیده
Recent reports on rod photoreceptor neuroprotection by Ca2+ channel blockers have pointed out the need to assess the effect of these blockers on mammalian rods. However, in mammals, rod electrophysiological characterization has been hampered by the small size of these photoreceptors, which were instead extensively studied in nonmammalian vertebrates. To further characterize ionic conductances and to assess the pharmacology of Ca2+ channels in mammalian rods, freshly dissociated pig rod photoreceptors were recorded with the whole cell patch-clamp technique. Rod cells expressed 1) a hyperpolarization-activated inward-rectifying conductance (I(h)) sensitive to external Cs+; 2) a sustained outward K+ current (I(K)) sensitive to tetraethylammonium; 3) a sustained voltage-gated Ca2+ current (I(Ca)) sensitive to benzothiazepine (diltiazem) and phenylalkylamine (verapamil) derivatives; 4) a Ca(2+)-activated Cl- current (I(Cl(Ca))); and 5) a plasma membrane Ca(2+)-ATPase. The Ca2+ current showed a range of activation from positive potentials to -60 mV with a maximum between -30 and -20 mV. In contrast to other L-type Ca2+ channels, rod Ca2+ channels were blocked at similar and relatively high concentrations by the diltiazem isomers and verapamil. The biphasic dose-response for D-diltiazem confirmed the low sensitivity of Ca2+ channels for the molecule. The ATPase, which was localized at the axon terminal, was found to contribute to Ca2+ extrusion. These results suggest that the electrophysiological features of rod photoreceptors had been preserved during evolution from nonmammalian vertebrates to mammals. This work indicates further that mammalian rods express nonclassic L-type Ca2+ channels, showing a low sensitivity to the diltiazem isomers used in neuroprotective studies.
منابع مشابه
Regulation of structural plasticity by different channel types in rod and cone photoreceptors.
In response to retinal disease and injury, the axon terminals of rod photoreceptors demonstrate dramatic structural plasticity, including axonal retraction, neurite extension, and the development of presynaptic varicosities. Cone cell terminals, however, are relatively inactive. Similar events are observed in primary cultures of salamander photoreceptors. To investigate the mechanisms underlyin...
متن کاملSynaptic transmission mediated by internal calcium stores in rod photoreceptors.
Retinal rod photoreceptors are depolarized in darkness to approximately -40 mV, a state in which they maintain sustained glutamate release despite low levels of calcium channel activation. Blocking voltage-gated calcium channels or ryanodine receptors (RyRs) at the rod presynaptic terminal suppressed synaptic communication to bipolar cells. Spontaneous synaptic events were also inhibited when e...
متن کاملExpression of the voltage-gated chloride channel ClC-2 in rod bipolar cells of the rat retina.
Voltage-gated chloride channels (ClC) are highly conserved during evolution and appear to participate in a variety of physiological functions. Recently, ClC-2 was proposed to play a role in stabilizing the chloride equilibrium potential near or below the resting membrane potential in neurons expressing ligand-gated chloride channels. Because rod bipolar cells in mammalian retina express three f...
متن کاملDifferences in calcium homeostasis between retinal rod and cone photoreceptors revealed by the effects of voltage on the cGMP-gated conductance in intact cells
We measured currents under voltage clamp in intact retinal rod photoreceptors with tight seal electrodes in the perforated patch mode. In the dark, membrane depolarization to voltages > or = +20 mV activates a time- and voltage-dependent outward current in the outer segment. This dark voltage-activated current (DVAC) increases in amplitude with a sigmoidal time course that is voltage dependent....
متن کاملCav1.4 L-Type Calcium Channels Contribute to Calpain Activation in Degenerating Photoreceptors of rd1 Mice
Retinitis pigmentosa is an inherited blinding disorder characterized by progressive degeneration and loss of photoreceptors. The exact mechanism of degeneration and cell death of photoreceptors is not known, but is thought to involve disturbed Ca2+-signaling. Ca2+ can enter the photoreceptor cell via outer segment cyclic nucleotide-gated (CNG) channels or synaptic Cav1.4 L-type voltage-gated ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 93 3 شماره
صفحات -
تاریخ انتشار 2005